In this study by researchers at the Massachusetts Institute of Technology, researchers aimed to explore the use of a micro-electrode array (MEA) as an assay to help identify the electrical network phenotypes associated with risk genes for autism spectrum disorder (ASD). Researchers characterized local and global network firing in cortical neurons and developed methods to analyze alternations between network active periods (NAP) and network inactive periods (NIP). The Shank3 knockout mouse is an established animal model of ASD. Researchers examined cortical neurons in Shank3 knockout mice and evaluated the electric characteristics of neuronal networks. Results indicated that Shank3 deletion leads to a decrease in neuronal firing activity. Furthermore, researchers identified that decrease in firing activity caused by Shank 3 deletion can be normalized by enhancing excitatory synaptic transmission with an AMPA receptor-positive modulator. Additionally, Shank 3 knockout mice networks produced a shorter NIP during slow network oscillation. This can effectively be normalized through the use of clonazepam. In conclusion, MEA recordings can be used as a means to assess network patterns affected by genes that are associated with ASD.
-
Archives
- July 2016
- June 2016
- May 2016
- April 2016
- March 2016
- February 2016
- November 2015
- September 2015
- July 2015
- June 2015
- February 2015
- October 2014
- August 2014
- March 2014
- January 2014
- September 2013
- August 2013
- June 2013
- May 2013
- March 2013
- February 2013
- December 2012
- November 2012
- August 2012
- July 2012
- June 2012
- April 2012
- March 2012
- February 2012
- January 2012
- December 2011
- October 2011
- September 2011
- August 2011
- July 2011
- June 2011
- April 2011
- March 2011
- February 2011
- January 2011
-
Meta